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Introduction

Stochastic analysis can be viewed as a combination of infinite-dimensional analysis, measure theory and linear
analysis. We consider spaces such as the infinite-dimensional space of paths in a given state space.

Around 1900, Norbert Wiener (1894-1964) introduced the notion of Wiener measure. This leads to ideas of
“homogeneous chaos” and analysis of brain waves.

Richard Feynman (1918-1988) worked on quantum mechanics and quantum physics, using ideas like [

paths in R3
and fmaps RP—Re"

Stephen Hawking (1942-) took this idea further: ||

universes”

Edward Witten (1951-) applied these methods to topology, topological invariants and knot theory.

This area’s connections with probability theory lend it the label “stochastic”. Areas of interest include
Brownian motion and other stochastic dynamical systems. A large area of application is mathematical finance.

This course is not on stochastic dynamical systems.



1 Re-Cap of Measure Theory

Definitions 1.1. A measurable space is pair {Q,. %} where Q is a set and % is a o-algebra on Q, so 0 € F,
AeZ = Q\AeF and A, As,--- € F = |J 2 Aie .

Example 1.2. Given a topological space X, the Borel g-algebra B(X) is defined to be the smallest o-algebra
containing all open sets in X. We will always use this unless otherwise stated.

Definitions 1.3. If {X, &/} and {Y, #} are measurable spaces, f : X — Y is measurable if B€ 8 = f~'(B) €
/. In general, o(f) := {f~(B)|B € %} is a o-algebra on X, the o-algebra generated by f. It is the smallest
o-algebra on X such that f is measurable into {Y, #}.

If X,Y are topological spaces then f : X — Y continuous implies that f is measurable — this is not quite
trivial.

Definitions 1.4. A measure space is a triple {Q, %, u} with {Q, . #} a measure space and p a measure on it, i.e. a
p:F — RsoU{oo} such that u(0) = 0 and Ay, Ay, -+ € F disjoint = p(Ujeq 4i) = Doioq 1(4;) < oo. The
space has finite measure (or p is a finite measure) if () < co. {Q, . F, u} is a probability space (or p is a probability
measure) if p(2) = 1.

Definition 1.5. Given a measure space {Q, #, u}, a measurable space {X, &} and f: Q — X measurable, define
the push-forward measure fopu on {X,. o7} by (fop)(A) := u(f~*(A4)). As an exercise, check that this is indeed a
measure on {X, o/}

Exercises 1.6. (i) Check that f.u is indeed a measure on {X, .7 }.
(ii) Show that if f,g: Q — X are measurable and f = g p-almost everywhere, then f.u = g.p.
Examples 1.7. (i) Lebesgue measure A" on R™: Borel measure such that A"(rectangle) = product of side
lengths, e.g. A\*([a,b]) = b — a. This determines A" uniquely — see MA359 Measure Theory.
Take v € R™. Define T, : R™ — R" by T,,(z) := x4+ v. Then (T}).(A™) = A" since translations send rectangles
to congruent rectangles and A" is unique. Thus A" is translation-invariant.
(ii) Counting measure ¢ on any {X, o/}: ¢(A) := #A. Counting measure on R” is also translation-invariant.

(iii) Dirac measure on any {X, o/ }: given x € X, define

s ={o 15

Dirac measure 0, on R"” is not translation-invariant.

Definitions 1.8. Let X be a topological space (with its usual o-algebra B(X)). A measure p on X is locally finite
if for all x € X, there exists an open U C X with ¢ € U and p(U) < co. p on X is called strictly positive if for all
non-empty open U C X, u(U) > 0.

Examples 1.9. (i) A" is locally finite and strictly positive.
(ii) ¢ is not locally finite in general, but is strictly positive on any X.
(iii) ¢, is finite, and so locally finite, but is not strictly positive in general.

Proposition 1.10. Suppose that H is a (separable) Hilbert space with dim H = oo. Then there is no locally
finite translation invariant measure on H except ;1 = 0. (Therefore, there is no “Lebesque measure” for infinite-
dimensional Hilbert spaces.)

Recall that

e a topological space X is separable if it has a countable dense subset, i.e. dx1,z9,--- € X such that X =
{@1,22,... };

e if a metric space X is separable then for any open cover {U, }oca of X there exists a countable subcover;



e non-separable spaces include L(E; F') := {continuous linear maps E — F} when E, F are infinite-dimensional
Banach spaces, and the space of Holder-continuous functions COt*([0, 1]; R).

Proof. Suppose that p is locally finite and translation invariant. Local finiteness implies that there is an open
non-empty U such that pu(U) < oo. Since U is open, there exist z € U and ro > 0 such that B,,(z) C U.
Then u(B,,(z)) < oo as well. By translation, u(B,(y)) < oo for all y € H and r < ro. Fix an r € (0,79);
then H = UyeH B.(y), an open cover. By separability, there exist y1,ya2,- -+ € H such that H = U;’il B,(y;), so
wu(Br(y;)) > 0 for some j, and so p(B,(y)) > 0 for all y € H and r > 0. Set ¢ := u(B,,/30(y)) for any (i.e., all)
y € H. Observe that if e1, ez, ... is an orthonormal basis for H then B, /30(e;/2) C By, (0) for all j. By Pythagoras,
these balls are disjoint. u(By,(0)) > Z;‘;l c=o0unless 4 =0. But p 20 = u(B,,(0)) < oo by local finiteness,
a contradiction. O

Definition 1.11. Two measures 1, ue on {Q, F} are equivalent if p1(A) = 0 < us(A) = 0. If so, write
H1 =~ [2.

Example 1.12. Standard Gaussian measure v on R™:

V(A) = (2@*”/2/ e~ 2I%/2 4z
A

for A € B(R"). Here dz = dA"(z) and ||z||> = 22 + -+ + 22 for & = (z1,...,25). A" &~ 4" since e~ 1#17/2 > 0 for
all z € R"

Definition 1.13. Given a measure space {Q),.7, u}, let f : Q — Q be measurable. Then p is quasi-invariant under
Fif fap =~ p, ie u(f~H(A) =0 < u(A) =0 forall A e 7.

Example 1.14. +" is quasi-invariant under all translations of R™.

Theorem 1.15. If E is a separable Banach space and i is a locally finite Borel measure on E that is quasi-invariant
under all translations then either dim E < co or = 0.

The proof of this result is beyond the scope of this course, although it raises the question: are there any
“interesting” and “useful” measures on infinte-dimensional spaces?



2 Fourier Transforms of Measures

Definition 2.1. Let u be a probability measure on a separable Banach space E. Let E* := L(E;R) be the dual
space. The Fourier transform fi : E* — C is given by

ll) = [E 12 dpu(z)

for £ € E*, where i = /=1 € C. It exists since [, [e®®|du(z) = [, dpu(z) = p(E) =1 < co. In fact, for all £ € E*,
(0] < 1 and 4(0) = p(E) = 1.

For E a Hilbert space H with inner product (-,-), the Riesz Representation Theorem gives an isomorphism
H* — H : {+ ¢* where (¢ € H has (¢* x) = {(x) for all z € H. Therefore, we can consider jif : H — C given by

ff(h) = /H e dp(z).

So fif(£*) = fu(¢). Without confusion we write /i for fif, and so use fi : H — C or fi : H* — C as convenient.
Example 2.2. For R™, if p = fiA", f: R" — Rxg, so u(A) = [, f(x)dz, f € L', [5, f(z)dz =1, so p(R™) =

Then
) = [ e dua) = / 0 () da

the Fourier transform of f up to signs and constants.

Example 2.3. For a general separable Banach space E, y = §,, for some zg € E, i : E* — Cis g(f) =
e(®) 4, (z) = e®(®0) In Hilbert space notation, if E = H, we get ji(h) = e*{olu
E 0

Proposition 2.4. (Transformation of Integrals.) Given {X, o/, u}, {Y, 8} and 0 : X — 'Y measurable, giving 0. p
onY, let f:Y — R be measurable. Then fX fofBdu= fY fd(0.p), in the sense that if one exists then so does the
other and there is equality.

x -y
N
R
Proof. By the definition of 0,pu this is true for characteristic functions f = xpg, B € £.

/XBO9dM=/ X{x|0(z)eB} A1t
X X

= u(0~1(B))
= 0.u(B)

= /Y x5 d(0.p)

Therefore the claim holds for simple f, and so for measurable f by the approximation definition of the integral. [

Remark 2.5. Back to ji: for a probability measure on a separable Banach space E and ¢ € E* we have a measure
e = Llop on R, and z — €*“(*) factorizes as

E—t>

R
1[(\ \Lt»—»e”
C

/ez z)dlu )
E

/ " dpu(t)

R

—He

since (s,t)g = st, (1,t)r = t in the integrand above. Thus f is determined by {u/|¢ € E*} by the formula
fi(0) = fae(1).

(=}



Remark 2.6. Let T € L(E; F), E, F separable Banach spaces, 1 a probability measure on E, then if £ € F*,
Ta(t) = [ 0 d(Tp)w)
F

_ / T 4 ()
E
= (T (0)),
where T* € L(F*; E*) is the adjoint of T given by T* : £ +— £ o T.
We ask:
e Can any function f: E — C be j for some p on E?
o If i =0 does p=v7?

Definition 2.7. Let V be a real vector space. A function f:V — C is of positive type if
(i) for all n € N, if Ay,..., Ay € V then (f(A; — Aj))};—; is a positive semi-definite complex n X n matrix;
(ii) f is continuous on all finite-dimensional subspaces of V.

Definition 2.8. A matrix A is positive semi-definite if AT = A and (A&, €)cn > 0.

Proposition 2.9. For p a probability measure on a separable Banach space E, i : E* — C is of positive type with
[(0) =1 and is continuous on E*.

Proof. First observe that 1(0) = [, 1du = pu(E) =1. If Ay,..., A, € E* and &y, ..., &, € C then

n

2
> i = 2)6& = [ [STeM0g] dutt) 20
j=1

k,j=1

and is clearly Hermitian since

i\ — Ae) = / ¢ @M@ ()
E
— e~ Ak (x)=A;(2)) dp(z)
E
= Ak = Aj)-
As for continuity, prove this as an exercise using the Dominated Convergence Theorem. O

Theorem 2.10. (Bochner’s Theorem. [RS]) For a finite-dimensional vector space V' (with the usual topology),
the set of Fourier transforms of probability measures on V is precisely the set of k : F* — C of positive type
with k(0) = 1. Moreover, each such k determines a unique probability measure pu, so i = v <= pu = v on
finite-dimensional spaces.



3 Gaussian Measures on Finite-Dimensional Spaces

3.1 Gaussian Measures

Recall that we have standard Gaussian measure 4™ on R™:

7(A) = (27r)_"/2/ e~ IeI7/2 qg.
A

This is a probability measure, since

/ e~llzl?/2 g :/ / e~ @i+ tal)/2 dz;...dz,
R™ —o00 —00

oo

H e~ /2 dx;

=17/~

oo 2 0o 0o
(/ e~ /2 d$> = / / e~ (@ +y?)/2 dzdy
—0 —o0 J—o0
2m e’} 5
z/ / e " rdrdf
0 0

= 27r[—e‘r2/2]§”

<

Also

=27
Lemma 3.1. For C a positive definite matriz and A a symmetric n x n matriz,
(Z) fR" e—%(C:c,x) de = (27T)n/2(det C)_l/Q;

(i) tr(AC—") = SEC [ (Ar, )45 a;

(Z’LZ) (Cil)ij = (2?1_;}1/62' fR” IiIJEi%(Cﬂc’@ dz.

Note. C positive definite = (Cwz,2) > N|z|? for all z, where ) is the smallest eigenvalue of C. So
e 2(Czw) < e~ 3=l dz, and so all the above integrals exist.

Proof. (i) Diagonalize C as C = U~'AU with U orthogonal (U* = U~') and A = diag(\1,..., ), A; > 0.
/ 67%(01,1’) do = / 67%<AUI,UCL“> dz
- / e~ 20vY) qy with y = Uz, U N" = A"

o0 o0 1 2 2
:/ e~z (Bt AT o day,

(ii) Take h > 0 so small that C' + hA is positive definite. By (i),

(2m)~ /2 / e~ 2{(CHAT) 4 — (det(C + hA)) /2.



d .
Now take E‘h:o'

(2m)~" / (A e O ap = T (det(T 4 hACT) det 0)
" h=0

= f%(det C)~ 2 tr(ACY)

since % ’h:o det(I + hK) = tr K for any matrix K.
(iii) Apply (ii) with A,, = 0 unless (p,q) = (4,7) or (j,4), otherwise A;; = Aj; = 1, so tr AB = Bj; + B;j, for
B=C7' and (Az,x) = z;2; + xj7;. O

Remark 3.2. If {V,(-,-)~} is an n-dimensional inner product space then (-, -)™~ determines a “Lebesgue measure”
M50 on V. For this take an isometry u : R® — V with (u(z),u(y))~ = (z,5), so u(z) = z1e; + - + Tne,
for some orthonormal basis eq,..., e, of V. Set A0 = y, A" (So the “unit cube” spanned by ey,...,e, has
A0 imeasure 1.) As an exercise, check that this does not depend on the choice of w.

Example 3.3. V = R" with (z,y)~ = (Cx,y) for some positive definite C. Write C = U~'AU with U orthogonal,
A = diag(\1,...,\,). Then VC = U~'AY2U, where A'/? .= diag()\i/Q, . .7)\,11/2) (the unique positive definite
matrix K such that KK = C). (v/C)* = v/C and vCV/C = C. Define u : R* — V by u(z) := (VC) 'z, so
(u(x),u(y))™ = (x,y). By definition, A7 1= u, \".

[ s = [ fu@)ane

% Rn
= /nf (\FC_lx) d\"(z)
= detVC . fly)dy.

So ME) = det VOA™ = (det C)1/2A™,

Definition 3.4. Let {V,(-,-)™} be a finite-dimensional inner product space. The standard Gaussian measure v¢"
on V is

DT (A) = (2w)*"/2/ e~ @22 NG (2)
A

for A e B(V).

Remarks 3.5. (i) If dimV =n and u : R® — V is an isometry, then {77 = u,(7"), so v is a probability
measure.

(ii) If V =R" with (z,y)~ := (Cx,y), C as before, then

AT (A) = (2m) 72 (det 0)1/2/ e~ 2(0m7) g,
A

Definitions 3.6. For V a finite-dimensional real vector space a (centred) Gaussian measure on V is one of the
form p = Tun™ for some T € L(R™; V). It is non-degenerate if T is surjective.

Remark 3.7. In general, Gaussian measures may not be “centred”. They include u = A,y™ for A affine.

Remark 3.8. A Gaussian measure p is non-degenerate iff it is strictly positive (i) and iff it is )7 for some
(n)~ on V (ii). If H,(-, )y is a Hilbert space and T : H — V is linear and surjective, we get (-,-)p on V by
(u,v)p := (T~ (u), T~ (v)) g, where T := T)(xerr)~ : (ker T): — V is bijective. This way we get a “quotient inner
product”. For (ii), take (-,-)~ = (-,-)p. For (i) note that T,y"(A) = 0 if ANT(R™) = (. If T is not surjective,
T(R™) is a subspace not equal to V, so there exists open balls that do not intersect T'(R™), which contradicts strict
positivity.



3.2 Fourier Transforms of Gaussian Measures
Lemma 3.9. For a € C, y € R", and C positive-definite,

(2m) /2 (det C)'/? / e 3(072) wy) qg = 37O W),

n

Proof. First consider a € R:

n

LHS = (27T)_"/2(det0)1/2/ e #(O@maCT ) a=aC ) 3aln.C7 ) gy

= (27T)_n/2(det 0)1/26%042@,6'711!)/ e—%(Cm’,m') da’

n

— 030°(W.CTMY) by Lemma 3.1.

For o € C, note that the LHS and RHS are holomorphic in a on the whole of C and agree on R, so they agree on
C. O

Corollary 3.10. The Fourier transform of the standard Gaussian measure on R™ satisfies

— 1 1
70 = oxp (=513 ) =eww (<5100 )

Recall that if {V, (-, )1/} is a real Hilbert space with dim V' < oo, then V* has a natural inner product making it
a Hilbert space, with Riesz isometric isomorphism V* — V : £ + ¢ so that £(z) = (¢!, 2)y for all z € V. If {e; 152
is an orthonormal basis, then (¢%, (?)y. = Py (' (e;)¢%(ej), since V** 22V canonically, so an inner product on V*
gives one on V.
Lemma 3.11. If E, F' are Banach spaces with T € L(E; F') surjective then T* € L(F™*; E*) is injective.
Proof. Tt T*(¢) = 0, then T*(¢)(x) = ¢(T(x)) =0 for all x € E, so £ = 0 since T is surjective. O

Proposition 3.12. A probaQbility measure 1 on a finite-dimensional vector space V is non-degenerate Gaussian if,
and only if, p(0) = e~ 2" for all € € V* for some inner product (-,-) on V*.
Proof. (= ) If u = Ty~™ for some surjective T : R™ — V', then, for £ € V*,
e) = Ty (6) = (T (1)),
by Remark 2.6. Moreover,
T (0)) = =317 Ol — =300,

where (01, 0%)" := (T* ("), T*(£*)) &)+, an inner product by Lemma 3.11.

(<) If a(f) = e~ 2D for some (-,-) on V*, take T : R™ — {V, (-,-)~} an isometry, where m = dim V' and
(+,-)~ is the inner product on V corresponding to (-,-) on V*. Then, for all £ € V*,

Toymi(0) = 7 (T*(0) = e HIT Ol = jp).

Bochner’s Theorem then implies that g = T,y™. O

Theorem 3.13. A strictly positive measure u on a finite-dimensional vector space V is Gaussian if and only if
lo is a non-degenerate Gaussian measure on R for all £ € V*\ {0}. If so, £ € L*(V,1;R) for all ¢ € V* and

fi(f) = e zltlis

Proof. (i) p is non-degenerate Gaussian = pu = T,y" for some surjective T € L(R™; V) = lop = L. TA™ =
(€ o T)«~™ is non-degenerate Gaussian on R, since £ o T is onto if £ # 0.

(ii) Suppose that ¢ € V* is non-zero, so £, is non-degenerate Gaussian on R. Then £,z = v for some (-, -),
on R. Therefore, 3¢(¢) > 0 such that

1 2
lo(A) = —c(0)t*/2 ¢ 1/2 dt
p(A) = [ SO e

10



—

i.e., (s,t)¢ = c(0)st. Therefore, fi(f) = (1) = e~/ 2¢®) gince 0, pu(s) = e=*"/(2¢®) by Corollary 3.10. Now
61 = [ 166 du(o)
v
~ [ £
R

_ c(€)1/2/t2(2ﬂ_)—1/26—c(€)t2/2 dt
R

= ¢(¢)™* by Lemma 3.1 (iii)

< o0

Therefore, [i(¢) = ezlldlzz ag required. Next note that the quotient map V* — L?(V, ;R) : £ +— [€] is injective
since £ € V* and

¢=0in L? = /() = 0 almost everywhere in V'
—> ker/ has full measure

= p not strictly positive unless ¢ =0

So now define (-,-) on V* by (¢}, £2)" := ([¢],[¢(?]) > and apply Proposition 3.12. O

11



4 Gaussian Measures on Banach Spaces

Definitions 4.1. Let F be a separable Banach space. A Borel probability measure p on E is said to be Gaussian
if £, is Gaussian on R for all £ € E*. Such a u is non-degenerate if it is strictly positive.

Remark 4.2. By Theorem 3.13, this agrees with the finite-dimensional definition in the non-degenerate case; a
slight modification of the proof of Theorem 3.13 handles the general case.

Lemma 4.3. If u on E is strictly positive and £ € E*\ {0} then . on R is strictly positive.

Proof. Take U C R non-empty and open. Then £,u(U) = p(¢=1(U)) > 0 since £~*(U) is open and non-empty in
FE, since ¢ is continuous and onto. O

Theorem 4.4. If vy is Gaussian and non-degenerate on E then for all¢ € E*, { € L*>(E,v;R) and 4(¢) = e~alelzz,

The proof of this mimics that of Theorem 3.13 and is omitted. However, we have not yet established whether
or not there are any non-degenerate Gaussian measures on infinite-dimensional spaces!

12



5 Cylinder Set Measures

Definition 5.1. Let E be a separable Banch space and let
A (E) :={T € L(E; F)|dim F < 00,T onto}.

We will write Fp for I'if T' € &/ (E),T € L(E; F). A cylinder set measure (or ¢sM) on E is a family {ur}req (m)
of probability measures pur on Fr, T € &/ (E), such that if we have

E—LsPp

NE

Fs

then ps = (ms7)«(pi1)-

Examples 5.2. (i) If u is a probability measure on E define pur := Ty (p) for each T € &7 (F). Then if rgroT = S
as above,
s = Si(p) = (ws7 0 T)s(p) = (ws7)+ (T (1)) = (ms7)+(107)-

If a csm {MT}T@{(E) on F corresponds to a measure in this way (i.e., there is a measure pu on E such that
pur = Typ on Fr) then we say that it “is” a measure, although we don’t yet know that it is unique.

(ii) If dim E < oo every CSM on F is a measure — just take u = p;q for id : E — E the identity map.

(iii) A real Hilbert space {H,(-,-)iy}. We have a canonical Gaussian csm on H, {7 |T € «/(H)}. ~# on Fr
(where T': H — Fr is onto) is defined by 4 := 4{+)7 where (-,-)7 is the quotient inner product on Fr:

-1

<u, U>T = <T|(_k10rT)Lu7 T‘(kcr T)L’U>H
Equivalently, (,-)7 on Fr is determined by (-,-)T on Fj, where
(AT = (T, T %) gy, (5.1)
so 4 (£) = exp(—z [ T*€[[F-)-
Exercise 5.3. Show that {v/|T € &/(H)} is a csMm. Hint: Use Fourier transforms.
Proposition 5.4. ForT =(¢¢€ H*, { #£0, ’yEH on R = Fy is given by

1 —t?
H
v (A) = 7/ exp <) dt
! Varl| il Ja T 206N
where (¢ € H is the Riesz representative of { € H*.
Proof. Method One. Use (5.1). ';[{\{(s) = exp(—3/¢*s[|%.) for s € R 2 R*, where ¢* : R — H = H* is t — t{* since
0 Ry = t{0* by = tl(h) = (¢, L(h))r = (*(t),h)m
as required. Therefore, v/ (s) = exp(—2||¢¥||%;s%), which is the Fourier transform of the measure given.
Method Two. (ker £)+ = {s¢*|s € R} since this is one-dimensional (¢ # 0) and is h € ker £ then
(h, ") = s(h,0*) iy = st(h) = 0 for all s.

So set £ = ) (ker £) - - lis
slF v 0(s1%) = se(0%) = s||¢7))%.

(71 :R — (ker /)L C H is given by ¢ — %, therefore
H

(s,1) < st ot > st
yU)je = ) = )
1N N /e %

so the measure is as given. O

13



Definition 5.5. The Fourier transform of a csM {ur|T € &7 (E)} is defined to be fi. : E* — C given by
fi.(€) == fae(1)

= / e " du,(t) (the Fourier transform of the measure , on R)
R

for £ # 0, and z.(0) := 1. This agrees with the definition when the cSM p. is a measure, by Remark 2.5.

Proposition 5.6. For the canonical Gaussian CSM on H, {'77@}T6M(E): if £ € H* is non-zero,
(i) vH(0) = exp(—z[1¢#]1%):
(ii) [ut?dvi'(t) = 1613

Definition 5.7. Suppose that 6 : E; — F5 is a linear map of separable Banach spaces. Given a ¢sMm {ur|T €
</ (E1)} on Ey we get a push-forward csMm {6, (p.)s|S € &/ (E2)} on Ey by

0. (pt.)s = ttsos
if S o6 is onto. If S o6 is not onto let F be the image of So#, 1 : F < Fg the inclusion, and define

O0x(p.)s = ix(pigzg)

WhereSTS/G:ElHFissuChthatiogxo/@:SOO.

Definition 5.8. (i) Given a ¢sM {ur}r on E and 0 € L(E;G), G a separable Banach space, we say that ¢
radonifies {pr}r if 6. (p.) is a measure on G.

(ii) @ € L(H;G), H a separable Hilbert space, G a separable Banach space, is y-radonifying if {0,(v")r}r is a
measure on G, i.e. # radonifies the canonical Gaussian CSM {'yjlf}Ted(H) on H.

Examples 5.9. (i) If 0 has finite rank then 6 radonifies all csms. For example, 0. (p.) = po if 6 : E — G is onto
and dim G < oo.

(ii) If id : E — E is the identity then id radonifies {ur}r if, and only if, {yr}r is a measure.

Definitions 5.10. For H a separable Hilbert space and E a separable Banach space, if i : H — E' is a continuous
linear injective map with dense range that y-radonifies we say that i : H — F is an abstract Wiener space (or AWS).
For example, L? — L'. The measure induced on F is called the abstract Wiener measure of i : H — E.

Proposition 5.11. An abstract Wiener measure is a Gaussian measure.

Proof. We need to show that ¢, is Gaussian on R for all £ € E*:

Lot ii

which is Gaussian if £ # 0; if £ = 0 we get Jgp. O
Example 5.12. Classical Wiener space. Let
H:=Ly'([0,T];R™)
= {paths beginning at 0 with first derivative € L2

:{ :[0,7] — R"

3¢ € L*([0, T]; R™) with o(t / b(s }

14



So d(s) = ¢(s) for almost all s € [0,T] and o(0) = 0.

T
@ iz = [ 6.6 ds

The operator % : Lg’l — L? is an isometry of Hilbert spaces. Let

E:= CO([OvT];Rn)

={0:[0,T] — R"|o is continuous and ¢(0) =0}
lolle = llollo == sup [lo(t)||zn
0<t<T

Then the inclusion ¢ : H — FE is continuous and linear. By Cauchy-Schwarz, it is injective. The image is dense in F
by the standard approximation theorems — e.g., polynomials p with p(0) = 0 are dense in Cy (the Stone-Weierstrass
Theorem).

Theorem 5.13. (Wiener, Gross et. al.) The inclusion i : Lg’l — Cy 1is y-radonifying.

Definitions 5.14. The Gaussian measure v induced on Cy is classical Wiener measure. Also, Cy, or i : L(Z)’1 — Cy,
is called classical Wiener space. L(Q)’1 is called the corresponding Cameron-Martin space or the reproducing kernel
Hilbert space.

Some questions to deal with:
(i) Is the map
probability measures on ¥ — CSMs on F
j— AT ()T € /(B)}
injective?

(ii) How about Fourier transforms of measures in infinite dimensions? Do we have an analogue of Bochner’s
Theorem?

Lemma 5.15. If E,G are separable Banach spaces, 0 € L(E; G) and {pr} e (p) i a CSM on E, then

0.0)(0) = 7.67(0)
for all £ € G*. In particular, if T € o/ (E), then pr(€) = p(T*(¢)) for all L € F.
Proof. If £ # 0 then

—

0. (1) (£) = 0. (11.)¢(1) by definition of i.
= j1gog(1) if £ 06 # 0 by definition of 6, (u.)
= fig-(0)(1)

= [.(6%(¢£)) by definition of f.
If £0 6 = 0 then 6*(¢) = 0 so RHS = 1 (probabilty measure) but LHS = 1 since 6, (u.) = do. O

Theorem 5.16. (Extended Bochner Theorem.) The functions of positive type f : E* — C with f(0) = 1 are
precisely the Fourier transforms of ¢csMs on E and i. = V. = {ur}r = {vr}r.

Proof. Given f : E* — C of positive type and T € &7 (E) (so that T : E — Fr is surjective), the composition
foT* : Fi — C is continuous, since dim F7}: < oo, and positive, and so is of positive type. Therefore, by the
finite-dimensional Bochner Theorem, we get pr on Fr with ip = f o T*. One can check that {pr}req(g) forms a
CSM.

This argument shows that fi. determines {pr}rec(5)-

Given a CSM {1 }reo () on E and £y, ..., 4, € E*, we need to show that

15



(b) if F =span{¥y,...,¢,}, then . is continuous on F.

(a) Let £y,...,0y be a basis for F. Define T : E — RN by T(z) := (El(x), e ,EN(x)>, which is surjective.

Therefore, we get pr on ~]RN. Also, since T is onto, T* : (RV)* — E* is injective. Its image is F since it sends the
dual basis in (RY)* to {Ej}é.vzl. Take € € (RM)* such that T*(e}) = ¢;. Then

DAl — )6 =Y mT (€] — ))&
] i,
= Z fir (e — €)&€; by Lemma 5.15
2%

> 0 since pr is a measure
(b) fir = fi. o T* by Lemma 5.15, therefore ji.|r = fip o (T*| "), which is continuous since fip is. O
Theorem 5.17. Let E be a separable Banach space with finite measures p,v on E. Then
(i) if Topp = Tyv for all T € o/ (E) then u=v;
(i) if L =D then p=v.

Proof. By the Extended Bochner Theorem, Theorem 5.16, (i) = (ii), so we need only prove the first part. We
define the cylinder sets Cyl(E) := {T~'(B)|B € B(Fr),T € «/(E)}. This is an algebra of subsets, but not a
o-algebra if dim £ = co. Given a probability measure u on E and T € «/(E), A =T~1(B) for some B € B(Fr),
w(A) = To(p)(B) = pr(B). Therefore, the csM {T,u|T € <7/ (E)} determines p(A) for all A € Cyl(E). Thus, the
theorem follows from the following Lemma 5.18: O

Lemma 5.18. If E is a separable Banach space then B(E) = o(Cyl(E)), the smallest o-algebra containing Cyl(E).

Theorem 5.19. (Uniqueness of Carathéodory’s Extension. [RW1].) Let p,v be finite measures on a measurable
space {X, o} and let o/° C o/ be an algebra of subsets of X such that o(/°) = o/. Then if u=v on F°, u=v
on o as well. (This actually holds if o7° is just a w-system, one that is closed under finite intersections.)

Proof of Lemma 5.18. Since T : E — Fr is continuous it is measurable, and T—1(B) is Borel if B is Borel, so
Cyl(E) C B(E).
Consider the special case that E C C([0,T]; R) is a closed subspace. Then B(E) = {ENU|U € B(C([0,T|;R))}

since
e the RHS is a o-algebra;
e RHS C B(FE) since the inclusion i : E — C([0,T];R) is continuous, therefore measurable;

e all open balls in F lie in the RHS.

Take z¢ € E and £ > 0. We show that B.(0p) € o(Cyl(E)). Since B(E) is generated by all such balls, the result
will follow. For this, let {q1, g2, ...} be an enumeration of QN [0,T]. So

B.(z9) = {x € E|vr € [0,1], |x(r) — zo(r)| < &}
={z € El|lz(q;) — zo(q;)| <&, 1 <i < oo}

= ﬂ{x € Ellz(q;) — zo(q:)| < e}

i=1

€ Cyl(E),

because
{ € Blla(a;) - wo(a:)| < e} = ev;' (BE(wo(@)) € CyL(E).
For the general case we use

Theorem 5.20. (Banach-Mazur. [BP]) Any separable Banach space is isometrically isomorphic to a closed subspace
of C([0, TT; R).
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Such an isomorphism maps £ — E C C([0,T];R); it maps Cyl(E) to Cyl(E) and B(E) and B(E) bijectively.
We proved the result for E, so it is true for F. O

Remark 5.21. The proof showed that B(E) = o{{|{ € E*} = smallest o-algebra such that each ¢ € E* is
measurable as a function ¢ : E — R, and that for E closed in C([0,T];R), B(E) = o{evy|qg € QN [0,1]}, where
evg(x) := z(q) is the evaluation map.
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6 The Paley-Wiener Map and the Structure of Gaussian Measures

6.1 Construction of the Paley-Wiener Integral

Let i : H — E be an AWS with measure . Let j : E* — H 2 H* be the adjoint of 4, defined by (j(¢), k) = £(i(h))
for h € H,ie. j(0) = (Loi)t = (i*(0)%. So E* L H S E.

Lemma 6.1. (i) j: E* — H is injective.
(ii) j has dense range (i.e. j(E*) = H).
Proof. (i)

J)=0 = (Loi)" =0
= foi=0
- £|i(H):O
— /=0

since i(H) is dense in E and ¢ is continuous.
(ii) Suppose that h L j(E*), i.e. (h,j(€))g = 0 for all £ € E*. Then £(i(h)) = 0 for all £ € E*. So i(h) =0 by
the Hahn-Banach Theorem. So h = 0, since ¢ is injective. So j(E*) is dense in H. O

Lemma 6.2. Given Banach spaces F and G, a dense subspace Fy C F, and a map o € L(Fp; G) such that Ik such
that ||a(x)||la < k||lz||p for all x € Fy, then there exists a unique & € L(F'; G) such that &|p, = a. Also, ||a]] < k.
Moreover, if ||a(x)|le¢ = kx|l for all x € Fy, then ||&(z)||l¢ = kl|z||r for all x € F, and so & is an isometry if
k=1.

Proof. Let x € F. Take (2,)2, in Fy with x,, — z in . Then
la(zn) — a(zm)lle = la(@n — 2m)lle < klzn — 2mllF

and so (a(z,))>2, is Cauchy in G, and so it converges in G. Set &(z) = lim, o a(z,). Check that this is
independent of the choice of the x,, — z. So we get & : F' — G extending «. Check that it is linear and unique.
For the last part,

la(z)|le =

lim o(z,)

n—oo

lim_{la(zn)]la

n— oo

IN

lim k||z,|r
n—oo
= kljz|lF

Therefore, ||@|| < k and & is continuous. If ||a(z,)|l¢ = k|lza||r for all n, the above argument shows that

la(z)||¢ = k||z||F for all z € F. O
Theorem 6.3. If { € E* then { € L?>(E,~;R) with ||{||z2 = ||7(¢)||z. Consequently, there is a unique continuous
linear I : H — L?(E,~;R), with I(h) := ( =), such that

H———"— I*(E,%:R)
\ />—>[€

Moreover, || I(h)|z> = |||z, so I is an isometry into L*(E,~;R).
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Proof. Let £ € E*, £ # 0.

121z =

/E U()? dr(z)
- / 2 d(£.(7)(0)
R

= / 2 dvy' (t)
R
= ||(£ 0 4)*||% by Proposition 5.6 (ii)
= [5(ON1F < oo
For the “consequently” part, we apply Lemma 6.2 with Fy = j(E*), F = H, G = L?>(E,v;R). O

Definition 6.4. The isometry I : H — L%(E,~;R) is called the Paley-Wiener map. It is the unique extension to
all of H of the natural map j(E*) — L?(E,~v;R) given by 5(¢) — [¢]12, which is well-defined by Lemma 6.1(i).

Remark 6.5. For h € H, I(h) = lim, _ ¢, in L?, where ¢,, € E* with j(¢,) — h in H. We have E* > H 5 E
with (j(€), h)g = £(i(h)), j(£) = (oi)t = (i(£))F. I: H — L*(E,~;R) is isometric onto its image.
Remark 6.6. If dim H < co we can take H = E and i = id, so j : E* — H is j({) = (£ oid)? = ¢%. In this case, j
is the Riesz transform H* — H.

If h € H = the image of j, take /,, such that ¢4 = h for all n, so I(h) = £,, = (h, —)g. Thus, in finite dimensions,
I(h) = (h, —)m; thus, in infinite dimensions we sometimes write (h, —)7; for I(h).

Note that (h,z)y does not (in general) exist in the infinite-dimensional case. If z € E, we can make classical
sense of it if x € i(H), x = i(k) for some k € H: we use (h, k). If h = £(j), £ € E*, we use {(x).

Now use I(h) = (h,—)3 — this is only defined as an element of L?(E,~;R), so I(h)(z) only makes sense up to
sets of measure zero.

In classical Wiener space Cy([0,T]; R™) with its Cameron-Martin space H = L(Q)’l([O, T];R™),

T
() = [0 6), )

T
_« /0 (i (s), dh2(s))gn” (Stieltjes)

“dh(s)” means “h(s)ds”.
We often write (h, =) : Co — R as

T .
o / (h(s),do(s))rn.
0

This is only defined up to sets of Wiener measure zero, and is the Paley- Wiener integral of h. However, this “line
integral” exists even if the path o is merely continuous; we do not need it be differentiable.

Definition 6.7. The Paley- Wiener integral for f € L?([0, T];R"™) is

<o - / T<f<s>,da<s>>Rn> =1 ( / () ds) .

That is, take h € Lg’l([O,T];R) such that h = f. It is in L?(Co,~;R) as a function of o.

G“C.

21—
H=12'__ 2
Jo —ds
Exercise 6.8. Let . be a ¢csM on F and let £ € E*, ¢ # 0. Prove that for s € R 2 R*, fip(s) = f.(sf).

Proposition 6.9. For any AWs i : H — E, if h € H, h # 0, then

L) (7) = Yy -
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Proof. If h = j({) for some ¢ € E*, then {oi = (h,—)y € H* and I(h) = ¢ by definition. Then ¢, (y) = (foi).(y) =
ngﬁm, as required.
In general, let ¢,, € E* with j(¢,) — h in H, so I(h) = lim, o [¢,] in L2. If s € R then
(ln)«v(s) = {1 0i(5)
= ez i)l by Proposition 5.6 and Exercise 6.8
—em 25 a5 — oo

= V{{L _>(s) by Proposition 5.6 and Exercise 6.8.

But (Z,)T’y(s) =4(sty) = [, €@ dy(z). Now £, — I(h) in L? and

ista(x) _ gisI(h)(x) N sln(z) — sI(h)(z)
2

e <2|s

since e — e = 24et(@+Y)/2 gip =

< [sln(z) = sI(h)()]

—0in L%? asn — oo

— 0in L.
So
Hst) = [ 10 dy (o)
E
= [eaam.n
= I(h).(s)
and the result follows from Bochner’s Theorem. O

Corollary 6.10. If f,g: [0,T] — R™ are in L? and v is classical Wiener measure on Cq([0,T];R™) then

(i) I, (f0T<f<s>,da<s>>Rn) dy(0) = 0;

(i) oy (KT (7)Ao (D) (o) = i 17(5) B s = ]2
(Z”) fco <f0T<f(3)a do—(s»R" fQT<g(3)a dU(s)>R") fO ]Rn ds = <f7 >
Proof. (i) Set h(t fo 5)ds, so h € Ly’ and, by definition, fo s),do(s)) = I(h)(c). Therefore,

/CO [ trdotoee arto) = [ 1) anto

= / tdvgh_>(t) by Proposition 6.9
R
= 0 by the symmetry of ~
(ii) Recall that [|I(h)|2. = ||hH22 . = ||f]|32 by construction.
0

(iii) Follows from (ii) by the polarization identity for inner product spaces:

2, B2
oty = Lot U =l

We have a map L%([0,T];R) — L%(Co,v;R) given by

fe <oH / <f<s>7da<s>>Rn,>,

an isometry onto its image. O
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6.2 The Structure of Gaussian Measures

Definition 6.11. If {Q,.7 P} is a probability space, G a separable Banach space, and f : Q@ — G, we say that f
is a Gaussian random variable (or random vector) if

(i) f is measurable;
(ii) f«P is a Gaussian measure on G.

Example 6.12. I(h): E — R is a Gaussian random variable on {E, B(E),~v} if i : H — E is an Aws and h € H,
by Proposition 6.9.

Remark 6.13. Let {Q,.#, 1} be a measure space, {X,d} a metric space, and f;,g : @ — X measurable functions
for j € N. f; — g almost everywhere/almost surely/with probability 1 means that there is a set Z € % with
w(Z) = 0 such that f;(z) — g(x) as j — oo for all z ¢ Z. Convergence almost everywhere is not implied by L?
convergence: consider for example the sequence of functions

X[0,1]> X[0,1/2]5 X[1/2,1]5 X[0,1/4]» X[1/4,1/2]> X[1/2,3/4]5 - -+

which converges to 0 in L? but not almost surely. However, if the fj are dominated then convergence almost surely
implies L? convergence.

Lemma 6.14. Let {Q, #,P} be a probability space and f; : & — R a sequence of Gaussian random variables such
that f; — 0 almost surely as j — oo. Then f; — 0 in L?. In particular, every Gaussian R-valued random variable
lies in L*(Q, #,P;R).

Proof. Set ~y; := (f;)«P on R.
7o) = [ ety

= / etsfi(w) dP(w)
Q
— 1 as j — oo by DCT
So 4;(s) — 1 for all s € R (X). Now,

1 61/267%%1&2 dt

V2T J

for some ¢; > 0 if f; # 0, so ¥;(s) = e"2% % for s € R, by Lemma 3.9. Therefore, cj_1 — 0 as j — oo by (K). But

dv;(t) =

HM§:A%M@

1/2,9
- [ ! e~ 2ot dt
R V2T
—-1/2
=¢; by Lemma 3.1
—0 O

Remark 6.15. From the proof we saw that if f :  — R is a Gaussian random variable then f € L? and
- = 1.2 2
f.P(s) = e~ 25 Ifllz2 | Cf. Theorem 3.13.

Theorem 6.16. (Structure Theorem for Gaussian Measures — Kallianpur, Sato, Stefan, Dudley-Feldman-LeCamm
1977.) Let v be a strictly positive Gaussian measure on a separable Banach space E. Then there exists a separable
Hilbert space {H, (-,-u} and ani: H — E such thati: H — E is an AWS with v = i, (y7).

Remark 6.17. The Structure Theorem tells us that all (centred, non-degenerate) Gaussian measures on separable
Banach spaces arise as the push-forward of the canonical Gaussian CSM on some separable Hilbert space. Put
another way, the AWS construction is the only way to obtain a Gaussian measure on a separable Banach space.

Proof of Theorem 6.16. We must construct H and i. Let £ € E*, £ # 0. Then ¢ € L? by Remark 6.15. Let
j : B* — L?(E,v;R) be the projection ¢ +— [¢]. Set H := j(E*) with (-,-)g := (-,-)z2. Consider j as a map
E* — H. By definition, this is linear with dense range. So see that it is continuous, let ¢,, — ¢ in E* as n — oo.
Then
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(i) ¢, — ¢ — 0in E* and ¢, — ¢ is a Gaussian random variable on {F,~v};

(ii) £ (x) —€(z) — 0 for all z € E, so £, — £ — 0 (almost) surely.
Therefore, by Lemma 6.14, £,, —¢ — 0 in L?, and so j is continuous. (Note: this argument shows that j is continuous
from E* with the weak-* topology to L2.) Now define i := j* : H = H* — E** by i(h)(¢) := (h,j({))g for h € H,
e E* (7).

Case 1. Suppose that E is reflexive, so the natural map k : E — E** given by k(x)(¢) := ¢(x) for z € E,
¢ € E*, is surjective (and so is an isometry). Then we get i : H — FE defined by (1), which is equivalent to
(i(h)) = {h, §(0)m for £ € E* he H (3),

Case 2. If E is not reflexive observe that the continuity of j : (E*,w*) — H was proved above. Use the theorem
that (E*,w*) = E. Again, we get i satisfying ({). We now have three checks to perform:

(i) i.vH” =~. Observe that

by Proposition 5.6
—— by the definition of j
But 4(¢) = e*%”ali"’, so i,y = 7 by the Extended Bochner Theorem.
(ii) ¢ is injective. This is easy, since j has dense range.

(iii) ¢ has dense range. It is enough to show that j is injective. Suppose that ¢ € ker j, so j(¢) = 0. Then £ =0
almost surely. But if £ £ 0 € E* then ker { is a proper closed subspace of E, so there exist x € E and r > 0
with B,.(x) Nker£ = (. So v(B,(s)) = 0, since £ = 0 almost surely, which contradicts the strict positivity of
y. O

Theorem 6.18. (Uniqueness of Abstract Wiener Spaces.) Suppose that i : H — E and ig : Hy — E are
abstract Wiener spaces with the same measure v on E. Then there exists a unique orthogonal U : Hy — H
(U*U =UU* =1id) such that ioU =iyp:

H0—>H

NS

Proof. Take j : E* — H and jo : E* — Hy as usual. We proved that ||j(¢)||g = ¢z = ||l7o(¢)||m, for £ € E* in
Theorem 6.3. Define Wy : j(E*) — jo(E*) by Wo(5(£)) := jo(¢). This is linear and well-defined since j is injective.
Also, for all h € j(E*), [Wo(h)|lz, = ||P]la-

Therefore, since j(E*) is dense in H, there is a unique continuous linear W : H — Hj extending Wy. Moreover,
for all h € H, |W(h)|lg, = ||hllz. Also, W is surjective since its image contains the dense subspace jo(E*).
Therefore, W is a norm-preserving isometry, so W*W = WW* = id. Also,

H—Y W,

A

So take U = W* : Hy — H, so since W o j = jg, i o U = ig as required.
For uniqueness, note that

iolU =iy = (U')" oj=jo
— (U')* =W since j(E*) = H
= U =U O
Example 6.19. Classical Wiener Space We used the inclusion 7 : LQ’1 — (Cpy. Other authors use ig : Hy :=
L*([0,T];R) — Co, where ig(h)(t) = [o h(s)ds for 0 < ¢ < T, h € Hy. We have U : L? — Ly as U(h)(t) =
Jyh(s)ds for 0 <t < T, heL2.
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7 The Cameron-Martin Formula: Quasi-Invariance of (Gaussian Mea-
sures

Let i : H — E be an AWS with measure v. Counsider T}, : E — E given by Ty(x) = x + i(h) for h € H. Suppose
that dim £ = n and consider v" on R™ with H = F' = R" and ¢ = id. Recall that

Y (A) = (277)—”/2/ e~ eI%/2 4y
A

for A C R™ Borel. If h € R™ then

(Th)« (") (A) = 7"(T}, 1 (A))
_ (2m)"/2 o—l2l1%/2 gy
T, ' (A)
:(gﬂ)fn/z/ e~ llu=hI/2 g,
A

:/ o) =B IAIP goyn ().
A

Therefore, (T3,).(y") = e =)=5ln1* 4 Thus we have

Proposition 7.1. (T},).y"™ = ™ with Radon-Nikodym derivative

AT0)r™ () lhatan =311
d~n

Recall that if p,v on {X, o/} are such that y(4) = 0 = v(A) = 0 then we write v < p and say that v
is absolutely continuous with respect to p. The Radon-Nikodym Theorem then says that there exists a function
S—Z : X — R>q such that v = %'u’ ie.

wm=A%www

. . d _
forall A € «. If 4 < v and v < p then we write pu ~ v, say p and v are equivalent, and we have S (z) = (§%(x)) ™
almost everywhere.

Proposition 7.2. If u is a probability measure (or, indeed, just finite) on a separable Banach space E, define
T,: E— FE:xzw— x+wv for a choice of v € E. Then for all { € E*,

—

(To)« () (0) = e fu(e).

Proof.
dﬁ@mzéﬂ@wmwm
= / ¢ du(y)
E
= "W p(0). O

Lemma 7.3. For any AWS i : H — E with measure 7y,
(i) for h € H, ') = 20" € LP for all 1 < p < oo;

(i) for all p,z € C, g h € H,

/ P9V @5 (@) qy () = @307 N9IT+ 1 IRIE+otg )
E

23



Proof. (i) Take h # 0, otherwise trivial. We know I(h) € L? and Proposition 6.9 implies that I(h).y = 7{,{’4
Therefore,

/ (e 05y dy = /  d(I(h).)(t)
E R

- / eyl ()

<ooforl<p<oo

since dng RO %e"f dt for some N, c > 0.
(i) If p = ai, z = bi for some a,b € R, we have the desired result, since h — I(h) is linear and so
[ ePte ) a@+=h 25 @) dy(z) = [, e @9th=) dy and ag+bh € H since H is a real Hilbert space. So [}, er(9: = @)+2(h=)5(
~ llag+bh3 :
e 2 H from before, as required.
Next fix p = ai. Both sides are analytic in z € C (see below) and agree for z € iR, and so agree for all z € C.

Next fix z € C and observes that both sides are analytic in p € C and agree for p € iR, and so agree for all
peC. O

Remark 7.4. Why do we have analyticity above? Consider a measure space {Q, %, u}. Let F: C x Q — C be
(jointly) measurable and F(z,w) analytic in z for almost all w € Q. When is [, F'(z,w) du(w) analytic in z € C?
Take a piecewise C! closed curve o : [0,T] — C, 0(0) = o(T), parameterizing a closed contour ¢. By Fubini’s

Theorem,
/(g/QF(Z,w)du(w)dz:/Q[gF(z,w)dzdp(w):0

by Cauchy’s Theorem. This gives analyticity by Morera’s Theorem. But in order to apply Fubini’s Theorem we

must have
[ [ 1Rl < .

This is at most length(o) [, sup,ce |F(z,w)|dp(w), where length(o) := fo |o(t)|dt. So we are all right if w —
sup.c i [F(z,w)| is in L' (Q, y; R) for all compact K C C. But this does not hold in our case!
For us, with, say, fixed p,

|F(z,w)| = eRerle =) (@)+Rez(h,=)5 (@)

el{Rep)g+(Re 2)h, =) (w)

//|a IF(o(t),w)] dy()dt = // KO IF) dy () (1) dt < oo,

where k(t) = (Rep)g + (Reo(t))h € H as usual.

/ D)5 4y = / eyl ), (5) < oo
E R

Theorem 7.5. (Cameron-Martin Formula.) For an aws i : H — E with measure v, let T, : E — E be Ty(x) :=
x+i(h) for h € H. Then (T}).y = v with

for w € F, and

(Tp)wy = elt) ™ =2kl

Remark 7.6. The Cameron-Martin Theorem is the analogue of Proposition 7.1 for translations by elements of the
dense subspace i(H) C E.

Proof of Theorem 7.5. Set ~p, := (T),)+7. By Proposition 7.2, for ¢ € E*,
n = eﬁf(i(h))@(@
— oV i(h) =515 (Ol
— VGO 3 iO
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Now set 7 := e(h=)"=3llhll%

2

(0= [ /7 asa)
_ / V) (=) =1 gy ()
_ ganhnH/ eV TTGOM G+ @) ()
— e 3Pl o= 3 13O+ 3 11AIE +V=TG @), h) 1
= (0)
Therefore, Bochner’s Theorem for infinite dimensions implies that ~y, = 7. O

Theorem 7.7. (Integrated Cameron-Martin.) If F : E — R (or E — any separable Banach space) is measurable
and h € H then

| Fatit)are) = [ Pt O gy (o)
E E
in the sense that if one side exists, both exist and are equal.

Proof. By Theorem 7.5 and Proposition 2.4,

Y —— (Th)«y

Th
EF——

E
\ lF
FoTy

R

Remarks 7.8. (i) Consider ¢ +— th: R — H. We get

1,2

/F(m—kti(h))dy(x)z/ F(z)el{h=)"@=3 105 gy ().
E E

Formally differentiate at ¢t = 0:

/EDF(JJ)( /F (z) dy(x).

If Fis a “nice” differentiable function with derivative DF : E — L(E;R), we have the above integration by parts

formula.
/ f(@)o(a) / e

(ii) In R,
if f and v are “nice” (“vanishing at 00”), f,v, f,v' € L?*(R;R). In R”, for f : R® — R and a vector field
V:R" - R",

[ Dr@v@)de= [ (5. V @) ds
= 7/ divV(x)f(z)dx
For us the vector field is V : E — E : x +— i(h) for all z € E.

“divV(e)” = —(h,—)(x)

We want to allow more general vector fields V : E — E. In the classical case these will be “stochastic processes”.
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Remark 7.9. The Cameron-Martin Theorem says that «y is quasi-invariant under translations by elements in the
image of i. The converse is also true: v is quasi-invariant under ¢ — z +v <= v € i(H).

Theorem 7.10. If H is an infinite-dimensional separable Hilbert space then the canonical Gaussian CSM on H,
{vH}, is not a measure on H.

Proof. Suppose not, so that v =~ is a measure on H. Then i = id : H — H is ~-radonifying, and so an AWS. So,
by the Cameron-Martin Theorem, v is quasi-invariant under all A € H. Thus dim H < oo by Theorem 1.15. O

Remarks 7.11. For i: H — E an AWS,
(i) It is possible to show that i(H) is Borel measurable in E and has measure 0.

(ii) L. Gross proved that 3ig : H — Ey, also an Aws, and k € L(Ey; E) injective and compact such that koig = i:

So v “lives” on Eg“ C "E. (k compact means that k(bounded set) is compact.)

Example 7.12. Classical case, E = Cy, Ey = closure of Lg’l in the norm

—o(t
olosa = sup 12D =0
5,t€[0,T],s%t ‘3 - t|

forany0<oz<%.
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8 Stochastic Processes and Brownian Motion in R”

8.1 Stochastic Processes

Definition 8.1. A stochastic process indexed by a set S with state space a measurable space {X, #/} is a map
z: 8 xQ — X for some probability space {€2,.%,P} such that for all s € S, the map Q — X : w — z5(w) 1= z(s,w)
is measurable.

Often S = [0,T] for some T > 0, or S = [0,00). A stochastic process is then a family of maps/paths S — X :
s+ zg(w) parametrized by w € .

In the Kolmogorov model of probability theory, the probability that our system or process behaves is a certain
way is P{w € Qs — z4(w) behaves that way} for a suitably chosen stochastic process.

Example 8.2. If A; € & fori=1,...,k and s1,...,s; € S then the probability that the process has value in A;
at s = s; for each i is P{w € Q|z,, (w) € A; for i =1,...,k}, which we often write as P{z,, € A; for i =1,...,k} or
Ps(A;y x - x Ay), where Py is the push-forward measure (z,).(P) on X*, where

2e 1 QO — XF
Wi (25, (W), 5 25 (W) 5
and s := (s1,...,5;). These {P4|s C S finite} are probability measures on X*, called the finite-dimensional

distributions of the process.

Example 8.3. If i : H — F is an AWS with measure v, consider z : H x E — R, {E, B(E),~} our measure space,
given by z(h,w) = (h, —)7(w) so S = H here. (Strictly, we need to choose a representative of the class of (h, —)~
in L2.)

Definition 8.4. If S, X are topological spaces (and o7 = B(X)) we say that a stochastic process z is continuous
(or sample continuous) if the map S — X : s +— z4(w) is continuous for all w € 2. (Some authors allow almost all
weN)

Example 8.5. Let Q = Cy = Cy([0,T];R™) = {continuous paths in R™ starting at 0}, P = Wiener measure,
X =R", o = B(R"™), S =[0,T]. Any measurable vector field V : Cy — Cj determines a sample continuous process
2:[0,T] x Cy — R™ by z4(0) = V(o)(s) for 0 € Cy and s € [0,T].

Simplest example: V = id, so V(o) = o for all 0 € Cy. Then zs(c) = o(s) for 0 < s < T, which we call the
canonical process on Co([0,T]; R™).

Exercise 8.6. Conversely, if z: [0,7] x Q@ — X is a continuous process, with X a separable Banach space, we get
®:Q— C([0,T]; X) given by ®(w)(t) = z(w) € X. Check that this is measurable. Hint: Use Lemma 5.18 and try
the special case X = R.

Definition 8.7. The law .Z, of z is the push-forward measure .Z, := ®,(P) on C([0,7]; X). (If zo(w) = 0 for all
w € O we can use Cy([0,T]; X).)

Remark 8.8. The canonical process [0,7] x C([0,T]; X) — X using the measure .Z, on C([0,T]; X) has the
same finite-dimensional distributions as z : [0,T] x Q@ — X. Consequently, the finite-dimensional distributions of z
determine its law.

Definition 8.9. A Brownian motion (or BM) on R™ is an stochastic process B : [0,T] x  — R™ such that
(i) Bo(w) =0 for all w € £
(ii) B is sample continuous;
(iii) .Zp is Wiener measure on Cy([0,T];R"™).
Example 8.10. Canonical BM with 2 = Cj, P = Wiener measure.

Remark 8.11. We could write [0, 00) instead of [0, 7] but then we would have to take care with condition (iii): it
is enough to say that B : [0,00) x Q — R" is a BM on R" if for all T' > 0, B|jo,1)xq is a BM on R™.
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Definition 8.12. If h € H := L3 ([0, T;R) C Cy and B is a BM on R", write [ (h(s),dBg)zn : Q — R for the
composition

0-2 ¢,

w — Bg(w)

1(h)=(h=)~

which makes sense since ® preserves sets of measure 0. Then if f € L?([0,T]; R),

/OT<f(3),st> =1 (/0 £(s) ds) 0h O R

Definition 8.13. For a function f on a probability space {2, #,P}, write Ef := fQ z) dP(z) for the expectation
of f.

Theorem 8.14. For B a BM on R™ and f € L*([0,T7; fo : Q0 — R isin L?(Q,.%,P;R) and

(i) G ST (9).dBL) — =% [T 1F())*ds — o= 31F1122 :

(ii) for f,g € L?([0,T); Efo ),dBy) fo fo Nds=(f,g)r2
(iii) E [y (f(s),dBs) = 0.
Proof. This follows from Corollary 6.10 and the push-forward theorem. O

8.2 Construction of Ito’s Integral

We want to construct the Ito integral
T
/ (as,dBs) : Q@ — R,
0

where a : [0,T] x 2 — R™ is a process. In the canonical version,

o /0T<as(a),das>.

Note that in the Paley-Wiener integral fo ),dBs) we have f not dependent upon w € . These are “constant
vector fields”. We want to give a more concrete definition that includes time evolution.

Definition 8.15. Let {Q, %, P} be a probability space. A filtration is a family of o-algebras on Q, {Z|t € [0,T]},
such that

o for all t € [0,T], # C .#; and
e 0<s<t<T = F,C F.

Example 8.16. Given a process z : [0,T] x Q — X, with {X, &/} any measurable space, define .%; := F#7 = o{z, :
QO — X|0 < r < t}, the “events up to time ¢” or “the past at time ¢”. .#7 is called the natural filtration of z.

Example 8.17. If Q = Cy([0,T];R™) and z is canonical (zs(w) = w(s)), then if 0 < 53 < 59 < --+ < s < ¢ and
Aq,... A, € B(R"),
{0’ S Co|0'(3j) S Aj, 1<5< k‘} (S ngtz.

To define Ito’s integral fo as,dBs) for a : [0, T] x Q2 — R™, we will need a to be “non-anticipating” or “adapted”
to some filtration of .%, usually .Z 2.

Definition 8.18. A process a : [0,7] x @ — R" is adapted to a filtration {F%|0 < ¢t < T} if a; : @ — R™ is
F-measurable for all 0 < ¢ < T. (In general, we can replace R” by any measurable space {X,.2/}.)

Take n = 1 for ease of notation.
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Definitions 8.19. Given a filtration {0 < t < T} on {Q,.%#,P}, a process a : [0,T] x Q — R is elementary if
forallweQ,0<t<T,

ar(w) = a_1(w)xqoy(t +Za3 W)X (t;,;41 (1)

for some partition 0 < g < t; < - < t < T of [0,7T]. (Some authors, such as [(], use [t;,t;11].) Here each
aj : @ — R is % -measurable for each j = 0,...,k — 1 and a_; is .Fp-measurable. Write &([0,T];R) for the
collection of all elementary processes [0,7] x @ — R. By comparison with the Fundamental Theorem of Calculus,
it is reasonable to define, for elementary processes a € & ([0, T]; R),

T k—1
| tedB)w) = 30y ) (B ) = Buw).

Now we approximate more general processes by elementary processes to get integrals converging in the function
space L?(Q,.7,P;R).
Let BbeaBMon R, B:[0,7] xQ — R. Given 0 <ty <t; <--- <ty <T, set

AJB(W) = Btj+1(w) - Btj (w)
Ajt = tj+1 — tj.

Then
2

k 2 k
a;A;B|| = a;j(w)AjB(w)| dP(w)

L2

—Q/Zaj )A; B(w)a (w)A; B(w) dP(w)

1<J

+ /Q Z (@i(w)A;B(w))” dP(w)

We will show that for suitable filtrations .Z,, e.g. %#; := F P,
Proposition 8.20. If B is a BM on R and «a; is F;;-measurable for each j and bounded then
(i) ifi <j, [oaio;A;BA;BdP = 0;
(i) [o02(A;B)?dP = (Ea?)At;
(iii) as an immediate consequence of (i) and (ii),

2

2
Z(XjAjB =
J

L2

T
/ as dBg
0 12

=3 lasli3a
J

T
— [l as
0

2
= ||as||L2([o,T]xQ;R)~

Assuming Proposition 8.20,

Theorem 8.21. For an elementary bounded process a : [0,T] x Q — R,

T
/ as dByg
0

= ||a-HL2([0,T]><Q;]R)-
LZ
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For B and %, as above, let & := &([0,T];R) be the space of elementary bounded processes a : [0,T] x Q — R,

with norm
T
lall == / Elau|? ds = [la.]| 2oz xem)-
0

Let & be the closure of & in L%([0,T] x Q;R). Define .# : & — L?(Q,.%,P;R) by #(a) := fOT as dBs.

Corollary 8.22. .# extends uniquely to a continuous linear % : & — L*(Q, .7, P R). This is an isometry into
L*(Q,.7,P;R). Write it as . (a) = fOT asdB;. So, for a € &, we have the Ito isometry

‘/OTasdBS
/Q(/OTasst(w)>2dIP’(w):/OTE|aS|2dS.

Proof. Lemma 6.2. O

= ||aHL2(szx[o,T];R),
L2 (5R)

i.e.,

We still need to prove Proposition 8.20 parts (i) and (ii), identify &, and relate the Ito and Paley-Wiener
integrals.

Theorem 8.23. Let {Q, 7, P} be a probability space and o/ C F a c-algebra. For f € LY(Q, Z,P;R) there exists
a unique f € LY(Q, o, P|;R) such that, for all A € o,

/AdeP’:/AfdP.

If f € L? then f € L? and f = PZ(f) for P : L*(Q,.7,P;R) — L*(Q, o, P|z;R) the orthogonal projection.
Write f as E{f|</}, the conditional expectation of f given / with respect to «/. Then also

(i) f >0 almost everywhere = f >0 almost everywhere;
(1) |E{f|o/ Hw)| < E{f|«Hw) almost everywhere;
(iii) B{—|aZ} : LY (Q, F ,P;R) — LY(Q, o, P|;R) is a continuous linear map with norm 1.

Proof. (Uniqueness.) Suppose that f and f are o/-measurable and satisfy

/Afd]P’:/Afd]P’:/Afd]P’.

Set g := f — f, which is &/-measurable, in L', and has fA gdP =0 for all A € &. Thus, g = 0 almost surely, and
so f = f almost surely.

(L? part.) P f satisfies our criteria for f since

e it is &/-measurable;

e it is in L?, and so is in L';

o if Ac o,

/Pﬂfdpz/XAP”fdP
A Q

= (x4, P f)12(0,7 Pm)
= <P“Q{XA7f>L2(Q,g,p;R) since (Pﬂ)* = pe

= (x4, >L2(Q,Q,P;R)

f
= [ rar.
A
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Thus f = P f by uniqueness.

(Existence.) For f € L' and f > 0 almost everywhere, define py on {Q, o7} by ps(A4) = JyfdPfor Ae o, a

measure with g < P|g. Set f = % : Q — R>. This satisfies the requirements for f since, if A € <7,

dpg _ dus _ _ _
/Ad(]mszf) dP = /A d(P|Q¢) d(Plﬂ) - /Ade - MF(A) - /Afd]P)

From this [, fdP = [, fdP < oo so f € L* since f > 0. This also gives (i). For general f € L', write f = f* — f~

in the usual way and take f = f+ — f—. It is easy to see that this satisfies all the requirements, but we must check
(ii) and (iii).

(i) [f (@) = Iflw) = f(w) +I’(W)7ﬂ> E{|fll}(w) = fT(w) + [~ (w). Also, [E{|fll#/}(w)] = |f(w)] =

_ ()|
|f+(w) + f~(w)], giving (ii), since f+ >0, f~— > 0 almost everywhere.

(iii) If f € L',
IE{ ]} 1r = /Q IE{flo7}| dP
< / E{f|o/} dP by (i)
Q

- [ 1n1ap

= [[flles
So E{—|«} is bounded linear with norm < 1. But if f =1, E{f|</} = 1, so the norm is 1. O

Definition 8.24. If 0 : Q@ — X is measurable, {X, &/} a measure space, define E{—|0} := E{—|o(0)}, where
o) = {071 (A)|A e o}

Lemma 8.25. Given a probability space {Q, F P}, a measurable space {X, @}, and 0 : Q) — X and f : Q@ - R
measurable, there exists a measurable g : X — R such that E{f|0} = g o 0 almost everywhere, and this map is
unique 0, (P)-almost surely.

0

Q—X
R

Proof. Suppose f > 0. We have Py on {Q, %} given by Ps(A) := [, fdP for A € #. We get a probability measure
0.(Ps) on {X,o/}; note that 6,(Ps) < 0.(IP). Set g := %ﬁpf)) : X — R, which is «/-measurable. We claim that
go 8 =E{f|8}. To see this note that

e go0 is o(f)-measurable;

e if A€ & then

o
S
*
—
~
<
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e taking A = X above gives go @ € L', therefore g o § = E{f|0}.

For general f write f = fT — f~ as before to get g = gt — g~ O

9

Remark 8.26. We write E{f|0 = x} for g(x) = “the conditional expectation of f given § = z” or “given f(w) = x
for x € X. This gives us an intuitive way to calculate E{f|0} for f and # as in Lemma 8.25:

e let x be some value of 0;

e calculate the “average value” of f on the preimage 6~ (x);

the result of this calculation is E{f|6 = z}; call it g(z);

the conditional expectation E{f|0} : Q — R is given by
E{f]0}(w) = g(f(w)) for w € Q.

Remark 8.27. If f is o(#)-measurable then f = E{f|0} almost surely, so there is a g with f = g o6 almost surely.

Example 8.28. (Weather forecasting.) Let {2 be the set of all time evolutions of all possible weather patterns. Let
0,, be the value at the nth morning, i.e.

0, : Q@ — X = {{wind speeds} x {rain volume} x ...}.

Consider just wind speed, for instance. Let f, : £ — R be the windspeed at mid-day on the nth day. Given some
observation in the morning, we want to forecast f,,. We need g,, : X — R, which tells us that if on the nth morning
x € X holds then g, (z) is the windspeed at mid-day. That is, we need g, such that g, o 8, is the “best” estimate
that we can make of f,,. “Best” usually means best in the mean square, the L?(2,.#,P; R) norm. Now, by Lemma
8.25 functions of the form g,, 06, in L? are exactly elements of L? (Q,0(6,,),P|,(,); R). To get the closest of these
to fn, take P(f,), the orthogonal projection of f,, i.e., we take E{f,|c(6,)}.

Remark 8.29. E{f|0 = z} = fg_l(w)f(y) dP,(y), where P, is a measure on the fibre §~!(x), known as the
disintegration of P.

Definition 8.30. Let {2,.%,P} be a probability space.

(i) If o, B C F, we say that o and A are independent, and write o U A, if Ac o/, Be B — P(ANB) =
P(A)P(B).

(i) If for j = 1,2, {X;, <} are measurable spaces with f; : @ — X, measurable functions, fi and f, are

independent, f1 11 fa, if o(f1) I o(f2).

Theorem 8.31. f1 11 f5 if, and only if, the product function fi1 X fa:Q — X1 X Xo:w (fi(w), fa(w)) satisifies
(f1 X f2)«(P) = (f1)«(P) ® (f2)«(P), the product of the two push-forward measures.

Recall that a measure p on Xy x X5 is a product py ® s if, and only if, for all A; € & and Ay € o, we have
w(Ay x Ag) = p1(Aq)pe(As), since p is determined by its values on rectangles.

Proof. Assume that fi II f; and A; € @7 for j = 1,2. Then

(1 % J2)(B)(A1 x Ag) = P{w € Q(f1(w), fo(w)) € A1 x Ao}

=P{we fi H(A) N fy (A2}

= P(f; " (A))P(f5 ' (Az2)) since f1 11 f

= (f1)«(P)(A1)(f2)(P)(A2)
So we have a product measure. Conversely, suppose it is the product measure. Take typical elements f; 1(Al) €
o(f1) and f5 '(A2) € o(f2). Then

P(fi (A1) N fy 1 (A2)) = (fr X f2)«(P)(Ar x As)

(f1)+(P)(A1)(f2)«(P)(Az) by hypothesis
P(fi(A1)P(f5 ' (A2)),
so f11I fs. O
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Corollary 8.32. For fi, fo as above with fi1 1l fo, if F}j : X; — R are measurable for j = 1,2, then
E{F1(f1(=))F2(f2(=))} = EF1(f1(=))EF2(f2(-))

provided Fy o fi, Fy o fo € LY (Q, .7, P;R).

Proof. The left-hand side is

mmwm®m/fmmmuww

Xo

/ Fi(2)Fy(9) d(fy % f2).(P)(z,y) =
X1 xXo

X1

by Fubini’s Theorem. If both integrals exists, this is equal to
/ FyofidP | Fyo fodP. O
Q Q

Theorem 8.33. Let B : [0,7] x 2 — R be a BM on R. Fizty € (0,T). Set B,(w) := Byyyy(w) — Byy(w). Then
B and By, are independent, i.e., B : Q — Co([0,T — to];R) is independent of B.|jo,] : 2 — Co([0,t0]; R). Also,
both B and Blo,t,) are BMs on R.

Proof. It o : [0,T] — R then define 6;,(c) : [0,T —tg] — R by 60:,(c)(s) = o(to + ) — o(to). The following diagram
commutes:

BxB|(0,1,]
Q Co([0,T —to]; R) x Co([0,t0]; R)

x -

Co([0, T R)

where Wy, is the product map W4 (o) := (0¢,(0), 0[0,,]). By Theorem 8.31, it is enough to know that W;; sends
Wiener measure to the product of Wiener measures. For this, see Exercises 3.4, 4.4, 2.6. O

Corollary 8.34. A BM has independent increments: firt 0 < s <t <u <v <T. Then if B is a BM on R, B; — B,
1s independent of B, — By, i.e.,
B, — B, 11 B, — B,,.

Proof. Set #, = BE = o{B,|0 < r < u} and F* = o{Buyr) = Bul0 <7 < T —u}. But By — By is
Fy-measurable, and B, — B, is %/*-measurable. Therefore, 0{B; — B;} C %, and ¢{B, — B,} C %, so
o{B; — Bs} 1 o{B, — By} O

Theorem 8.35. Given a probability space {Q, %, P}, o/ C.F a o-algebra, and f € L*(Q, .7 ,P;R), then
fllo = E{f|lo}=Ef.
Proof. First, Ef is o/-measurable and in L'. Secondly, if A € &7, then

/@ﬁwzma/w=wﬂm=MﬁmL
A A

since f IT x4. By Corollary 8.32 with F} = F, =1id, this is [, fdP. Thus Ef = E{f|«/}, as required. O

Theorem 8.36. (The Martingale Property of Brownian Motion.) If #, = 8 = ¢{B,.|0 <7 < s} for aBM B on
R, then for 0 < s <t,
E{B;|-#s} = Bs.

Proof. By — By 11 %4 by Corollary 8.34 and Theorem 8.35. Also,
E{B; — B,|#,} = E{B, — B,} = 0.
Since B, : Q@ — R is Gaussian, EB,. = 0 for all r, and so fCo oy dy(o) = 0:

QJPHCOJV g
| l

B,
R o



But, since B, is .%,-measurable,
E{B; — Bs|%#s} = E{B|-%#s} — E{Bs|%s}
= E{B;|.%#,} — Bs. O
Theorem 8.37. If B is a BM on R with its natural filtration Fs := FB, then for s <t, E{(B; — Bs)?|Zs} =t —s.
Proof. Theorem 8.36 implies that B; — B, I1 %, so (B; — Bs)? 11 %, so
E{(B; - B;)*| 7} = E{(B: — B,)*}
= E{B} — 2B, B, + B!}

=t—2(tAS)+s
=t—s. O

Lemma 8.38. (Conditional Expectations.) Let {Q,.% P} be a probability space, &/ C .F a o-algebra, § :  — R
o -measurable and f : Q — R F-measurable.

(i) if 0, f € L? or 6 bounded and f € L,
E{0f|«} = OB{ f| </ };

(ii) if B C o is a o-algebra then
E{f|#} = B{E{f|</}|#}.

Proof. (i) For 0, f € L?, write E{f|«/} = Pf, where P = P is the orthogonal projection. Note that OE{f|/} is
/-measurable and in L'. If A € &/, then
[ o-tr-prae= [ xaoa-pys)ar
A Q

= (xa0, (id=P)f)r>
= ((id —P)(xa0), f)r2 since (id —P)* = (id —P)
= 0 since P(xq0) = xa0.

Therefore, [, 0fdP = [, 0E{f|</} dP, as required.
Following from the above, if 6 is bounded and ./-measurable, and g € L', then E{g0|«/} = 0E{g|«/}. If f € L',
take f, € L?(Q,.#7,P;R) with f, — f in L' as n — co. For instance, by the Dominated Convergence Theorem,

W
T = 1w

will do. Again by the Dominated Convergence Theorem, 6f,, — 6f in L', so
OE{fl/} = lim OE(f, |/}
= lim E{0f,|o/)
=E{0f|}

by the continuity of E{—|</} in L!.
(ii) Easy exercise. O

Lemma 8.39. For B a BM on R with its natural filtration F, := FB and for a partition 0 < t; < t;11 < t; <
tiy1 <T of [0,T], if oz, a5 : & — R are bounded and F,- and F;,-measurable respectively, then

(Z) ]EO(Z'OZJ'AZ‘BA]'B = O,’
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Proof. (i) w = a;(w)a; () (Br,., (@) — By,) is i -measurable,

E{aiainBAjB} = ]E{E{OZZO[JAZBAJBLQ‘}J }}
= E{a;a; A BE{A;B|.%,}} by Lemma 8.38
=0

since E{A;B|.#;;} = 0 (the martingale property).
(i)
Eoj(A;B)? = E{E{0}(A:B)*| . }}
= RB{a?E{(A;B)?%:,}} by Lemma 8.38
= (Ea?)A;t by Lemma 8.38 O

Remark 8.40. This proves Proposition 8.20, and so, by Theorem 8.21
7 £(0,T)) — L*(Q,.Z,P;R)

T
a»—>/ a;dB; = E a;A;B
0 .
J

is an isometry into L2(£2,.%,P;R) and so has a continuous linear extension
I E — L*(Q,.7,P;R)

that is norm-preserving, where & is the closure of & in L?([0,T] x Q, B[0,T] ® #,\! @ P;R). For a € & write .7 (a)
as fOT as dBg, the Ito integral. We usually write L?(B) for &, equipped with the norm

T
lallz2(By = / E(as)?ds
0

L?(B) is also an inner product space: for a,b € L*(B),

T T T
(a,b)r2(p) = / (Easbs)ds =E {/ as dB; / bSst} )
0 0 0

In particular, we have the Ito isometry:

]E(/OTasst>2E</OT(as)2ds>.

Definitions 8.41. Given a filtration {#;|0 < t < T} of a probability space {2, #,P} and a measurable space
{X,a'}, a process a : [0,T] x Q — X is progressively measurable (or progressive) if for all ¢ € [0, T] the map
[0,t] x Q2 — X
(s,w) = as(w)
is B[0, t] ® F;-measurable (and so a is adapted). Also, we say that P C [0,T] x € is progressively measurable if the

process as(w) := xp(s,w) is progressive. The set of such P form a o-algebra on [0,7] x €, denoted Prog, and a
process a is progressive if, and only if, it is Prog-measurable.

It is a fact that L?(B) is the set of equivalence classes of Prog-measurable processes in L%([0,T] x Q;R). Also,
any adapted process with right- or left-continuous paths is Prog-measurable.
If as is independent of w € Q then we have both the Paley-Wiener integral fOT asdBs and the Ito integral

fOT as dBg, defined in different ways. Later work will show that they agree.
Definition 8.42. For B: [0,7] x Q@ - RaBMon R, a € L?*(B) and 0 <t < T, define

t T
/ as,dB, = / X0,¢)(8)as dBs.
0 0
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Exercise 8.43. a € L?(B) = Xjo4 - a € L*(B), so the RHS above makes sense.
Also note that Bljg is a BM on R and aljgy € L*(Bljo,4), so we can form fot(aho,t])s d(Bl[0,4)s, and since it
clearly agrees with f(f as dBs for a € &, by continuity, it agrees for all a € L*(B).

Definition 8.44. Let {Q,.%,P} be a probability space with filtration {%#|0 < t < T} or {F#]0 <t < oo}. A
process M : [0,T] x @ — R™ or [0,00) x Q@ — R" is an .Z,-martingale if

(i) it is adapted (i.e. My : @ — R™ is Z;-measurable);
(ii) M, € L for all ¢ (and so EM, exists for all ¢);

(iii) the martingale property: if s <t then E{M;|.%;} = M, almost surely.
33M

If no filtration is specified then M is a martingale if it is an %" -martingale.
Example 8.45. Brownian motions are martingales, as we have proved for n = 1.

Theorem 8.46. Let B be a BM on R and a € L?(B). Then the process z : [0,T] x  — R defined by

2(w) = ( /O o st> ()

is an FB-martingale.
Proof. It a € £(]0,T);R), s < t,

k

ar(w) = a_1(w)xqoy(r) + Z (W)X (1,511 ()
§=0

for a1 Fp-measurable and «a; #; -measurable. We can assume that s = t¢;,, t = t;, for some ji, jo. Then

t s Ja2—1
/ a, dB, :/ a,dB, + Y o;A;B.
0 0

J=J1
Now fos a, dB, is Zs-measurable and, applying the conditional expectation E{—|%s} to both sides,
Jj2—1 ja—1
EQ Y o;AB|.F, p = > E{E{o;A;B|.%, }Z.}

j=n j=n

j2—1

= > E{o; E{A;B|.F, } | 7.}
J=j1 \T/

=0

since the martingale property of B implies that (e) = 0. Therefore, for a € &, ]E{ fg a, dB,

ﬁs} = fos a, dB,

almost surely. Since E{—|.%,} is continuous in L?, the result follows for a € L?(B). a
Corollary 8.47. Let B be a BM on R and let a € L*(B). Then ]Efot asdBs =0 for all t € [0,T].
Proof. Since z; := fot as dB, is an .ZP-martingale,
Ez, = B{z|#P} = 20 = 0,
and z; I 7L since ZE = {0, Q}. O

Remark 8.48. It can be proved that [0,7] — R : ¢t — fg as dBs(w) may be chosen to be continuous (so that
fot asdBs for 0 < ¢t < T is sample continuous). For each ¢ we have to choose some version of fot as dBy from its

L2-equivalence class. But it we want f(f as dBs to be .#P-measurable as well, we need to modify .#? to include
sets of measure zero in .#Z. Then we get a process that is both continuous and adapted. These are the “usual

conditions” on %,.
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Theorem 8.49. (Ito’s Formula.) Let B be a BM on R with its natural filtration #; = FP. Let 2 : [0,T] x @ — R

be given by t
2(w) = (@) + ( [ e dBS) (@),

for an adapted a : [0,T] x Q — R such that t — a,(w) is piecewise C (or of bounded variation), and o € L*(B).
Suppose that § : R — R is C%. Then for 0 <t < T,

0(z(w)) = 0(z0(w /9 (2s(w ds+</ 0’ (2s( ))asdB)( )
—1—5/0 0" (2s(w))as(w)as(w) ds almost surely.

For us, we need 0’ (z,(w))as(w) in L2(B). The idea of the proof is to use stopping times to extend our definition
of the integrand. We take 0 =ty <t} < --- < tx+1 = t. For “nice” 0,

0(z1(w)) — 0(z0(w))

= (9’(ztj (W) (21,11 (W) — 21, (W) + %9”(2@ (W) (24,11 (W) — 2, (w))2 + higher 0rder>

j=0
The first and second terms in It6’s formula come from the first term here.
Ajz = (ay,)Ajt + oy A B
SO

(AjZ)2 ~ (aéj)2(Ajt)2 =+ 2(1;],0125]. AjBAjt + (Oétj)2(AjB)2
I~ 0 + 0 + (Oétj)2Ajt

as we know that E{(A;B)?} = A;t. We summarize these results in the Itc multiplication table:

dt | dB
dt | 0 0
dB | 0 | dt

See exercises for a more in-depth treatment of this.

Examples 8.50. (i) 2z =B; =0+ fg dBy; thisis a =0, a = 1 in Ito’s formula. Let  : R — R be 6(z) = z2. So
t 1t
B§=B§+/ QBSdBS—kf/ 2ds
0 2 Jo
t
=0+2/ B,dB, +t.
0

Thus,

¢ 1 1
/ B,dB, = —~B? — _t.
0 2 2

(ii) Exponential martingales. Let k € L' ([0, T];R). Since h € L?, h(t) = fot h(s)ds. For 0 <t <T, set

M, = exp </0t h(s)dBs — ;/Ot |h(s)|2ds> ,

using either the Paley-Wiener or Ito integral as h is independent of w.
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Claim 8.51. M satisfies
t
M, =1 +/ Mh(s)dBs
0

almost surely for 0 <t <T.

This is an example of a stochastic differential equation:

th = Mtht dBt
My =1

Proof. Set

¢ 1/t
zt:/ h(s)st—f/ |h(s)|* ds
0 2Jo
with 6 : R — R given by 6(z) = e®. Then

0(z¢(w)) = 0(2.(w)) + /Ot e (@) (—;hi) ds

¢ _ 1t )
+ (/ ezS(—)hS dBS) (w) + 7/ 625(w)(hs)2 ds
0 2 0

t
M, =1 —|—/ Msh(s) dB, almost surely. O
0

almost surely for 0 <t <T. So

We should check that M,h(s) € L*(By), i.e., M.h() € L*(B).

Lemma 8.52. M; € LP for 1 <p < oo. In fact,
E{(M,)7} = e3rr=1) i (k) as,
Proof. Method 1. By Proposition 7.1, with H = L(Q)’l, for w € C,

/ e )E ) 4y (o) = edut Il
Co

Therefore,
/ P ()i plhll gy = 32 0I5~ plln
Co
_ ohp-DlIAl%

But M; is the composition

Blo,¢(—) (h =) =3 1nl%

Q Co([0,1]; R) —= R.

Method 2. Use Cameron-Martin: in the Wiener space Cy([0,];R), if F': Cyp — R is measurable, then for p € R,

~

/ F(o +ph) dy(o) = / F(o)ert)a=3# 1M dy (o),
C[) CO

" E{F(B +ph)} =E {F(B)(Mt)pe%p\lhll?q—%pzIIhH?;} _

Now take F' =1 to get

1:/ R PR T A
Co

= E{(Mt)p}e%p”hﬂy—%szhH?{. i
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Proposition 8.53. M;, 0 <t <T, is an ﬁf-martmgale. In particular, EM; =1 for all 0 <t <T.
Proof. This is immediate from Claim 8.51. O

Remark 8.54. As was noted above, an exponential martingale is an example of a stochastic differential equation.
A general stochastic differential equation on R takes the form

{dl’t = A(xy)dt + X (x¢) dBy
o =4(g.

This means that z : [0,T] x Q@ — R satisifes

¢ ¢
Ty =q +/ A(zs)ds +/ X (xs) dBs almost surely.
0 0

g could be a point of R or a function ¢ : Q — R; we need z. to be adapted. Note that if X (z) = 0 for all x, we have

an ordinary differential equation
dxt
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9 Ito Integrals as Divergences

9.1 The Clark-Ocone Theorem and Integral Representation
We work with canonical 1-dimensional Brownian motion:

= Go([0, T R)
Fy=0clevs[0< s <t} =c{p— p(s)|0 <s <t}
Bi(w) = w(t) = evi(w)

so # = FPB.

Theorem 9.1. For V :[0,T] x Cy — R such that

k
Vi(o) =Y (tAtjar =t At5)ay(0)
=0

where 0 =tg <t; <--+ <tgp1 =T and o : Q — R has a;j(o) depending only on alj ), i.e. a; is Fy;-measurable,
and o is bounded for all j, then if F': Co — R is measurable, then

/C Fo+ V(o)) Jo #eVe(@)dotts [T 15 Ve@)l* dt gy (o) = /C F(o)dy(o),
0 0

where v is Wiener measure.

Proof. We use induction on k. Consider the case k = 0. 0 = t5 < t; = T and «g is constant, since it is Fg-
measurable and %y = {0,Q}. Thus V; = tag for 0 <t < T, s0 V. € H := Ly’ ([0, T];R) and we can apply the
Cameron-Martin Formula, Theorem 7.7, with F' : Cy — R given by F'(¢) := F(o + V.). Thus

/F(O‘—‘rv.)d’y((f): F(o)e (Vo) @= 31V 4y (o),
C() CU
i.e.
/ F(o)dy(o) = | F(o+V(e))e Jo Veare=b i Vel ds dy )
C() CO

Now assume true for k = n — 1 for some n € N and consider the case k =n. Set Tp =t, s0 0=ty < - < t, =
To < tpy1 =7T. We have

Co([0, T); R) ©  Co([0, To; R) x Co([0,T — Tol; R)

Co([0, T]; R) Co([0, To[; R) x Co([0, T — To|; R)

e
where Ty (0) == o + V(0), Ty (0, p) := ©(6 4 V(5)), where

o o(t) Ost<T
o(t) = {U(TO) Fot—Ty) To<t< T

soTy =00Ty 0071, 5 =0"1(0,p). Then

Vi) = (550t A s — A L)ag(0) = V(o) 0<t<T
! (t — To)ax(o) Ty <t<T,

since aj(G) depends only on &]j,,], s0 @;(6) = aj(o). Thus, Ty (o,p) = (6 + VT(0), p + tag(o)). Also,

T 9 NN To g ) T—Tp
/0 %Vs(a)da(S)— ; %Vs(o)da(s)—&—/o ak (o) dp(s),
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since these are elementary Ito integrals and so just a sum of Ajos because %VS € &. Set
F:=Fo® 1:Cy(0,Tp];R) x Co([0,T — Ty];R) — R.

Then

T

[ ot viene i v an G g o)
Co

:/ Fofye Jo® Vedoomd [0 (Va(@) dsom [T a(0)s dpu =3 [T (400107 ds gy T=To () dyTo (o)
oTo  oT=To

where 47 denotes Wiener measure on CJ := Cy([0,7|;R), 7 € {To, T — Tp }

o {/c Flo+ V(@) dy" 0 <p>} T BRI ey o)

0

by applying the Cameron-Martin Formula to 7 =70 as in the case k = 0, and so, by the induction hypothesis,

:/T {/T_T F(o,p) dvT‘TO(p)} dy"™ (o)
CUO Cy 0

-/ F(o)d(0)

as required. O

Lemma 9.2. (Improved Integration by Parts.) For V as in Theorem 9.1, F : Cy — R of class' BC' and v =
Wiener measure,

oV
[ DO a0 = [ Fo) ( | oot >> (o).

Proof. For 7 € R replace V' by 7V in the formula of Theorem 9.1 and differentiate both sides with respect to 7 and
evaluate at 7 = 0. O

Definition 9.3. If i : H — E is an AwS (such as L)' — Cp) and F : E — R is differentiable we get DF(z) €
L(E;R) = E*forz € E. So, for all z € E, Dy F(x) := DF(x)o¢: H — Ris a continuous linear map, the derivative
of F' in H-direction or H -derivative.

Thus, we get Vg F : E — H defined by

(VaF (), h)n =Dy F(a)(h) = lim Flz+ tz‘(ftz)) — Fz)

So Vy F(x) = j(DF(x)), with j : E* — H as usual. Therefore, if F'is C!, then Vg F : E — H is continuous. If F
is BC! then ||V F(2)| < |l|DF ()|« < constant, so Vg F is bounded.

Remark 9.4. Lemma 9.2 can be written

/C (VaF(x),V(z))gdy(x) = — F(x)divV(z)dy(x)

Co
where divV : Cy — R is — fOT V, dB;.
Definition 9.5. If F is a normed vector space, a subset S C F is total in E if the span of S is dense in E:

k
span S := Zajxj ajeRz; €5 keN

Jj=1

1F is bounded and Fréchet differentiable with DF : Cy — LL(Co; R) bounded.
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Lemma 9.6. S is total in a Hilbert space H if, and only if,

(h,s)y =0¥s €S = h=0.

Proof. (h,s)g =0Vs€ S < h LspanS <= h L span$S and spanSLzo < spanS = H. O

Proposition 9.7. In an AWS 1 : H — FE, {€<h’_);}_%”h“?{‘ h e H} is total in L*(E,v;R). (In fact, we need only
that h € j(E*).)

Proof. Note that e~ 3lIPl% is constant and so is irrelevant. Suppose f : E — Risin L? with fE f(z)e @) dy(z) =
0 for all h € j(E*). Taking h = j(¢) this gives that for all £ € E*,

/ f(2)e™ dvy(z) = 0.
E

Note that z — [, e*@) f(x) dy(z) : C — C is analytic in z € C, as usual. Therefore, for all z € C and ¢ € E*,

[ e 1@ drta) =0,
E
and so, for all £ € E*,

/E @ f(x) dy(a) = 0,

The result then follows from Lemma 9.8. O

Lemma 9.8. If f € L'(E, u;R) is such that

[ #@e auta) =0
E

for all £ € E*, where p is a finite measure on E, then f =0 p-almost surely.

Proof. Set f = [T —f asusual, so fT(z)f (x) = 0 for all x € E. Form measures psx by psps(A) =
[ fH(@)dp(z). Then [, f(z)e® du(z) = 0 for all £ € E*, so ay+ = fiy-, and so pp+ = py— by Bochner’s

Theorem. Thus,
L@ aua) = [ 5@ dnse o)

So fT = 0 almost surely, as does f~, and, therefore, so does f. O

Remark 9.9. Lemma 9.8 shows that {sin(-),cos¢(:)|¢ € E*} is total in L?(E, u; R), since cos{(z) + isinl(z) =
@) so f Lsin(-), f L cost(-) = f =0 by Lemma 9.8. In particular, the BC' functions E — R are dense in
L*(E, 1; R).

Proposition 9.10. { 1,0+ fOT Qs da(s)‘ o€ 5} is total in L?(Cy,~;R) for v = Wiener measure on Co([0,T]; R).

Proof. For he H and 0 <t < T, set

M :=exp (/ hedo(s / |hs |2ds)
0

By Claim 8.51, Mk =1+ fOT M"h,do(s). Therefore, {1,0 — fOT a do(s)’ a€ LQ(B)} is total in L?(Co;R) by

Proposition 9.7. But each fOT asdo(s) is an L? limit as n — oo of a sequence fOT al do(s) for some a™ € &. O
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Theorem 9.11. (Clark-Ocone Theorem for BC' Functions.) If F : Cy — R is BC! then

Flo) = /C Fdy+ /OT]E { ;VHFt(-)‘ %} () do(t),

where P is the natural filtration of canonical BM, o{ev, |0 < s < t}.

Proof. Set G(o) := fOTVS(J) do(s); V is elementary, so V' is as in Theorem 9.1. By Proposition 9.10, the set of
such G together with the constants is total is L%. Set F := F — fCo Fdy, so fCo Fdy=0,so F L all constants in
L?. Then

| PG dr0) = [ (VuF©@). V(o) dilo)
Co C

- / 0 { / S F () Valo) ds} dy(o)

Now Vi F(0) € L*([0,T]; R), bounded in ¢ € Cy, and so is V(). Therefore, Vi F(0)V (o) € L*([0,T] x & R), so
we can apply Fubini’s Theorem to the above:

ris= [ ([ varoome) a
- [ ([ e{mirol|z i) o
since V() is .Z,-measurable
-/ ( / E{Van ()2} () do<s>> ( / o) da<s>> d(0)
-/ (Gw) [ e{vurc|#) (a)da<s>> (o)

by the isometry property of the It integral. Now subtract the LHS from the RHS and use the totality of the Gs
and constants together with the fact that the expectation of an It6 integral is zero. Therefore,

(F(U) - /OTE{ngS(a)‘yS} da(s)) e

/c0 (F(U) - /()TE{VﬁFs()‘ ﬁs} (o)da(s)> dy(o) =0,

it is orthogonal to all constants. Thus, by the totality of {G, constants},

for all G. Since

— T .
F :/ ]E{VHFS(—)’ﬂ’S} do(s),

0
as claimed. O

Remark 9.12. This says that for F € BC!, F = J F +divU for some U, since if F is BC*', F = divU for nice
U fCo F = 0. The result for F € L? is called the Integral Representation Theorem.

Theorem 9.13. (Integration by Parts on Cy.) Let V : Co — L2 be such that V : [0,T] x Co — R is in L?(B),
and so is adapted. Let F : Cyg — R be BC*. Then

/co DF(o)(V (o)) dy(0) = /

C

F(o) ( / V(o) do<s>> dry(o)
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i.€e.

/ <vHF<a>,v<a>>Lg,ldv<a>=— Flo)div V(o) dv(o),
Co Co

where divV : Cy — R is divV (o) := — fo a(s).
Proof. Use Clark-Ocone to substitute for F' in the RHS since, by the martingale property of Ito integrals,

/CD </0T V(J)sdo(s)> dy (o) = 0.

RHS—0+/CO (/OTE{VI;F(U)S ys}/OTV(a)Sdg(s)> dy(o)
- /OT (/COE{V;,F(U)S 9;}V<a)s> dy(o)ds

T
= / VuF(0)sV(s)dy(o)ds since V(—) is .Zs-measurable
0 Co

Thus

- /C (ViF(0),V(0)) 31 d(0)
= LHS -

The above result shows that Ito integrals are divergences.

Theorem 9.14. (Integral Representation for Cy.) If F € L*(Co;R) then there exists a unique o : [0,T] x Co — R
in L?(B) such that

T
F(o) = / Fdy —|—/ o (o), do(s) almost surely.
Co 0

Proof. For an alternative proof, see [MX]. To show existence, set L? := {f € L?|[Ef = 0}. If F € L?> N BC' then

T
Flo)= | UF)(0). o),
where U(F), = E{ 2VpF(-),| #} € L*(B),
U:L?>NBC' — L*(B) ¢ L*([0,T] x Co; R).

Recall the the Ito integral % : L*(B) — L? is norm-preserving. Thus, Clark-Ocone implies that .# o U(F) = F for
all F € L2NBCY, and )
[Fll2 = |7 o U(F)|[2 = [[UF)|[L2(5),

so U preserves the L? norm. But BC! is dense in L? by Remark 9.9, so L2NBC! is dense in L2, since the projection
F i F— [ Fdymaps BC' to L?2N BC!. Therefore, U has a unique continuous linear extension U : L? — L2?(B)

that is norm-preserving. Since .# o U = id on the dense subset L2NBCY, 7 oU =id on L2. So for fel?,

;= / 0(£.)(0) do(s).

:U(F—/COch).

So for F € L?, set

As for uniqueness suppose we are given two candidates of’ and af. Set 8 := of —af € L?*(B). Then
s o(s) = 0. Therefore,
T
[ 1800015 ds = o =0,
0 L2
s0 ||8]|2(B)y = 0 by the isometry property, i.e. § = 0. ]
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Theorem 9.15. (Integral Representation.) Let {Q, % P} be a probability space, B : [0,T] x @ — R a BM with
filtration F, = FB. Suppose f: Q — R is in L? and Fr-measurable. Then there is a unique a’ € L?(B) such that

T
f=Ef+ / al AB, almost surely.
0

Proof. Consider the map Q — Cp : w — B.(w), so % = o(B.). Let F(o) := E{f|B. = o} for almost all o € Cy, so
f=FoB. F¢eL?since (B.).(P) = v, Wiener measure. Take o so that

Fw) = [ Fay / " o (o), dos).

Therefore,

o=B(w)
But the composition
B.(— T oF do

Q (=) L

is
T
W (/ o (B.(-)), dBS> (w)
0

since it holds is ¥ is elementary. Therefore, take af (w)s = af'(B.(w))s. Uniqueness follows as before. O

Corollary 9.16. (Martingale Representation of Brownian Motion.) For B a BM on R, suppose that M is an
FB -martingale with My € L?. Then there is a unique o € L*(B) such that

t
M; = M, +/ asdBg almost surely
0

for0<t<T.

Proof. Take oy = a7 as in Theorem 9.15. Hence,
T
My = EMyp + / aM dB,.
0
Therefore, by the martingale property of It integrals,
t
Mt = ]E{MletB} = ]EMT +/ Géwt’ dBS
0

Finally, note that Z = {0, Q}, since By(w) = 0 for all w € Q. Therefore, E{—|#f} = E, and so
EMy = E{Mr|.Z£} = M.
Uniqueness holds just for My by Theorem 9.15. O

Remark 9.17. We claimed (but did not prove) that we can choose ( fot o dBS> (w) for each ¢ to make it continuous
in t for all w € Q. Therefore, if {M;}ic(o,7] is as above, there exists {M{};c(o,7] so that

e it is continuous in ¢ for all w € ;
o M| = M, almost surely for each ¢ € [0,T] (they disagree on sets of measure zero in .Zr);

so M/ is #P V Zr measurable for each ¢, where Zr is the collection of sets of measure zero in Fr. In fact,
{M/}icpo,r) will be a F] := FP V Zp-martingale. (See [RW1] and [RW2].)
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Example 9.18. Consider © = [0, 1] with Lebesgue measure A\! and the process a : [0,1] x  — R given by

ar(w) :== {é iiz

Set aj(w) :=t for all w € Q. a}(w) = at(w) almost surely for each ¢ € [0, 1], but it is not true that a; = a} for all
t € [0,1] almost surely. Note, however, that a = a’ in L2([0,1] x ; R).

Corollary 9.19. If M is an FP-martingale with My in L?, there exists a process (M) : [0,T] x  — Rxq such
that

(i) it is adapted;
(ii) (M)o = 0;
(iii) t — (M) (w) is non-decreasing;
(iv) {(M;)? — (M)|0 <t < T} is an FL-martingale.
Definition 9.20. (M) is the increasing process of M, or its quadratic variation.

Proof. (For M. bounded, i.e., 3C such that |M;(w)| < C for all ¢ and w. This is not the case for BM.) For some
a € L*(B),

t
M, = M0+/ s dBs.
0

Apply Ito’s formula
t t
1
L‘ME = Mg +/ 2Mt th + 5/ 2thth7a
0 0

with 0 : R — R given by §(x) = 22, so M? = 0(M,):

t 1 t
“O(y) = (o) + / (2 dr, + / 0 (z,) dvyda,”
0 0
So

t t
1
Mf:Mg+2/ Msasd33+§2/ a? ds.
0 0

Hence,

t t
Mff/ aids:Mgw/ Mo, dBg,
0 0

and since M. is bounded, M.a. € L?*(B), and so the RHS is an .#P-martingale. (Mj is constant since it is
ZEB-measurable, and FE = {0,Q}.) Now set (M), := fot a?ds. O

Example 9.21. If M; = B; then B —t = 2 fg B; dBs, so (B); =t almost surely. This actually characterizes BM.

9.2 Chaos Expansions

Suppose that f: Cp — R is in L2 For some o € L?(B),

T
f(o) z/c f—l—/o at(o) do(t) almost surely,

with By(0) = o(t). a:[0,7] x @ — R has oy € L?*(Cp;R) for almost all ¢ € [0, T] and is .#;-measurable, therefore,
there exists { 4|0 < s <t} in L?(B][ ) such that

t
ap = / y —|—/ o (o) do(s) almost surely
Co 0
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Therefore, writing & := fCo oy,

/Cof+/ a; do(t) //aét Ydo(s)do(t).

Qs t 18 Fs-measurable and in L2, so we repeat the above. Thus
fo)=F+ [ al as(n)

ta
/ / atl)t2 dU tl dO’(tg)
tk to
/ / / a | (0)do(ty)...do(ty) as

where a1V € L2({0 < t; <--- <tp_1 < T} C[0,T]* 1 R) and agf?m’tk is .F;,-measurable in L?({0 <t; <--- <
t, < T} x Q;R). This corresponds to an orthogonal decomposition of L?(Cy;R), the Wiener homogeneous chaos
decomposition. (All of the terms with an @ are orthogonal to the others.)

Example 9.22. IEfOT fot as do(s)do(t) fOT bsdo(s) = 0. By the isometry property,

LHS — /OTE (/Ot 4.0 do(s) bt) at
- /OT bE (/Ot - da(s)> dt

=0

since the expectation of an Ito integral is zero. This leads to the notion of Fock spaces in quantum field theory.
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